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ABSTRACT: Hurricanes that damage lives and property can also
impact pollutant sources and trigger poor water quality. Yet, these water
quality impacts that affect both human and natural communities are
difficult to quantify. We developed an operational remote sensing-based
hurricane flood extent mapping method, examined potential water
quality implications of two “500-year” hurricanes in 2016 and 2018, and
identified options to increase social-ecological resilience in North
Carolina. Flooding detected with synthetic aperture radar (>91%
accuracy) extended beyond state-mapped hazard zones. Furthermore,
the legal floodplain underestimated impacts for communities with
higher proportions of older adults, disabilities, unemployment, and
mobile homes, as well as for headwater streams with restricted elevation
gradients. Pollution sources were repeatedly affected, including ∼55% of wastewater treatment plant capacity and swine operations
that generate ∼500 M tons/y manure. We identified ∼4.8 million km2 for possible forest and wetland conservation and ∼1.7 million
km2 for restoration or altered management opportunities. The results suggest that current hazard mapping is inadequate for
resilience planning; increased storm frequency and intensity necessitate modification of design standards, land-use policies, and
infrastructure operation. Implementation of interventions can be guided by a greater understanding of social-ecological
vulnerabilities within hazard and exposure areas.

■ INTRODUCTION
Globally, the most costly natural disasters are attributed to
flooding, and the cost of flood events will likely continue to rise
due to ongoing climate change and modification of flood-
plains.1−3 Substantial resources have been dedicated to
delineating flood-prone areas in some regions, yet recent
work has revealed that people and property are at greater risk
of flooding than previously estimated.4−6 In addition to higher
storm frequency and intensity, which can exceed infrastructure
design capacity, development within floodplains has increased
risk.3,7−10

Unfortunately, flooding disproportionately affects vulnerable
human and ecological systems expected to be least equipped to
recover.11−13 While inclusion of social vulnerability in disaster
assessment and preparedness is a growing practice, few studies
have quantified hazards in relation to ecological vulnerability,
though evidence suggests this would improve policy
recommendations.14−16 Recent research emphasizes building
resilience, such that communities exposed to future disasters
may be buffered from damage, respond and recover more
quickly, and achieve better outcomes.17,18 Quantifying
resilience, which varies over space and time, is at the early
stages of research and practice.17,19,20

Water quality problems during and after floods threaten the
health of both humans and aquatic species. Flooding can
contaminate drinking water and increase the spread of

waterborne diseases.21,22 Overland flow from agricultural
lands can elevate nutrient, chemical, and pesticide concen-
trations, harming aquatic organisms and degrading the
ecosystem.23−26 Untreated sewage and waste from concen-
trated animal feeding operations (CAFOs) contain additional
biological and chemical elements, including heavy metals,
pathogens, and antibiotics.27 Widespread flooding can also
release organic material into waterways, depleting dissolved
oxygen that most aquatic organisms need to survive,
exacerbating eutrophic conditions and harmful algal blooms,
and promoting the spread of invasive species.28−30 Develop-
ment of adaptation strategies to reduce flooding and water
quality impacts requires understanding the capacity of at-risk
people, ecosystems, and water infrastructure to withstand and
recover from flooding.
Measuring water quality impacts during large flood events is

challenging, but satellite-based remote sensing can provide
insight for quantifying potential damage and identifying
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solutions.11 In 2018, Hurricane Florence caused a variety of
water quality problems in North and South Carolina, including
wastewater treatment plant (WWTP) and sewer overflows up
to 300 km inland, coal ash spills, breaches of CAFO waste
lagoons, and numerous fish kills.31,32 Because many in situ
sensors went offline and hazardous conditions precluded
manual sample collection, state and federal agencies relied on
aerial surveys and anecdotal reporting to assess impacts.
Satellite image-based flood extent mapping can aid in
estimating the exposure area and the potential reach of water
quality impacts. Remote sensing data and geospatial techniques
are widely used for tracking of spatial and temporal inundation
patterns.33,34 Radar is particularly suited for mapping storm-
induced flooding as it is highly sensitive to the presence of
water and can penetrate through clouds and detect water
beneath forest and wetland vegetation.35−38

Recent hurricanes that repeatedly affected the Carolinas
present a timely case study for assessing social-ecological
vulnerability across floodplains and highlighting opportunities
to improve resilience. Documentation of conditions on the
ground by the U.S. Geological Survey (USGS) and the
National Oceanographic and Atmospheric Administration
(NOAA) following Hurricanes Matthew (October 2016, up
to 46 cm rainfall) and Florence (September 2018, up to 89 cm
rainfall) and publicly available satellite-based radar enable
detection of repeated flood exposure. Affected communities are
evaluating options from property buyouts, to infrastructure
adaptations and management changes, to watershed-scale
nature-based solutions (NBS). Conserving and restoring
floodplain forest and wetlands can reduce peak flood stage
and reduce economic damage, as well as provide services such
as nutrient cycling and water purification, and maintain
important plant and wildlife habitats.36−46 In some cases,
NBS can be more cost-effective than hardened infrastructure
such as dams and levees.48

Our objectives for this study were to (1) map the flood
extent from recent hurricanes, (2) investigate the implications
of differences between detected flood exposure compared to
existing flood hazard maps for assessing impacts to vulnerable
human communities and freshwater ecological systems, and
(3) identify opportunities to reduce future hurricane-
associated water quality problems.

■ MATERIALS AND METHODS
We examined threats posed to water quality and opportunities
to improve resilience to future storms in the North Carolina
(NC) Piedmont and Coastal Plain. We defined flood hazard
areas using state-mapped flood hazard and estimated exposure
to flooding with satellite remote sensing methods. To assess
water quality implications of hazard and exposure, we
conducted a spatial overlay analysis considering social and
ecological assets, as well as sources of water quality
contaminants. To aid relief and recovery efforts, we examined
the distribution of hazard and exposure in the context of social
vulnerability and freshwater ecological vulnerability. Finally, we
identified locations where interventions could be implemented.
Although resilience and vulnerability may not be direct
opposites, they are related.18 We reasoned that an intervention
that can reduce impacts to sensitive human and natural
systems should result in higher resilience and better long-term
outcomes following a flood event. Remote sensing and spatial
analysis were completed using Google Earth Engine (GEE).49

Flood extent classification algorithm tuning and statistical

analyses were completed in the R programming environ-
ment.50

Study Area. This study focused on NC watersheds that
drain to the Atlantic Ocean, mainly in the Piedmont and
Coastal Plain regions (Figure 1). Elevations across the

Piedmont plateau east of the Southern Appalachian mountains
range from 450 to 100 m, transitioning to the Coastal Plain
with sandy soils extending to the coastline (Figure 1A). The
region is characterized by a humid subtropical climate, with
average temperatures ranging from −1 °C during the winter to
31.7 °C in the summer. Snow is rare below the mountains,
with most precipitation falling as rain in the Piedmont (112−
122 cm/y) and Coastal Plain (112−142 cm/y) regions. NC
has repeatedly been affected by hurricanes, especially during
late summer and early fall. Historically used for agriculture and

Figure 1. Study area in North Carolina showing topography and the
major river basins draining to the Atlantic Ocean (A), as well as 2011
landcover (B) in the coastal plain and piedmont regions.
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forestry, the landscape has undergone rapid urban and
suburban development in recent decades (Figure 1B).
However, substantial riparian forests remain along rivers, as
well as extensive swamps and wetlands. These habitats support
high biodiversity, including providing spawning areas for
diadramous fish populations and species of concern such as the
Atlantic sturgeon.47

A variety of water quality concerns exist in the study area.51

Numerous hazardous waste sites, such as defunct coal ash
ponds, occur across NC. Point sources of nutrients and other
effluents are ubiquitous, including industrial dischargers,
WWTPs, and postconstruction stormwater management
systems permitted under the National Pollutant Discharge
Elimination System (NPDES). NC is nationally ranked second
for swine production and third for poultry production, with
one of the highest densities of CAFOs in the US. CAFOs can
be a point source (via discharges from manure lagoons) and a
nonpoint source (via land application of manure).52,53 Swine
CAFOs typically use liquid waste management regulated by a
statewide general permit under NPDES, which designate crops
where manure can be applied at agronomic rates, among other
parameters.54 Poultry facilities mainly operate with dry waste
and are not regulated by NPDES in NC.53,55 A recent analysis
found that nonpoint sources, including fields where manure is
applied, may contribute 35% of pollutants in the Cape Fear
River under normal flow conditions.56

Defining Flood Hazard and Exposure. Mapped Flood
Hazard Zones. We considered three levels of flood hazard
mapped by the NC Division of Emergency Management
Services, including the 0.2% annual exceedance probability
(AEP) zone (500-year floodplain), the 1% AEP zone (100-year
floodplain), and the floodway, which floods frequently and
includes levees and channels intended to protect adjacent land.
These categories correspond to distinct legal requirements and
land use planning restrictions under the National Flood
Insurance Program; in particular, insurance for structures is not
always required beyond the 1% AEP zone, depending on local
regulations.57 We considered areas mapped as “future 1% AEP”
to be part of the 1% AEP zone, as these locations are likely to
flood when development shown on zoning and land use
planning maps is realized.58

Estimating Hurricane Flood Exposure Using Remote
Sensing. To represent flood exposure, we delineated flood
extent following Hurricanes Matthew and Florence. We used a
supervised random forest classification approach incorporating
pre- and poststorm 10-m radar imagery (Tables S1 and
S2).59−62 Random forest is a nonparametric machine learning
algorithm that is widely applied in remote sensing and
classification problems across disciplines, including social
science, economics, ecology, and even previous studies of
flood hazard.6,59,63−65 Combining bootstrap aggregation and
random feature selection, random forest constructs many
independent decision trees with controlled variance and
corrects for overfitting. Random forest can handle large,
multidimensional data sets, including both categorical and
continuous covariates, and is robust to multicollinearity.59,62,66

We reasoned that regions where repeated flooding was
detected would represent higher intensity exposure. For
model training and validation, we compiled confirmed flooded
and nonflooded location data for each event, consisting of high
water marks verified in the field and randomly selected pixels
within flooded and nonflooded regions delineated from NOAA
high resolution aerial photography acquired following each

hurricane (Tables S1 and S2).67−69 Final random forest
models included the following covariates: pre- and poststorm
Sentinel-1 C-Band radar vertical and cross-polarizations,
vertical/cross-polarization ratio, elevation, height-above-near-
est-drainage (100 upstream cell threshold), geomorphological
features, 1000-year pluvial and defended floodplains, and the
percent tree cover and impervious cover mapped by the
National Land Cover Database.70−74

Assessing Impacts to Vulnerable Communities with-
in and beyond Mapped Hazard Zones. To gain insight
into how flood hazard and exposure affected vulnerable human
communities and freshwater systems, we used quantile
regression. Quantile regression has been previously applied
in studies of hazards and social vulnerability; this approach
accounts for differences in the effect of a factor that are not
captured by changes in the average of the distribution of the
response variable.75,76 We explored how the effect of hazard
and exposure varied across the distribution of socio-economic
indicators within census tracts and indicators of ecological
vulnerability within hydrological unit code (HUC) 12
watersheds. For each indicator, we estimated separate
regressions for the relationship between hazard zones or
detected flooding and the median (0.5 quantile), the lowest
(0.1) conditional quantile, and the highest (0.9) conditional
quantile subsets of census tracts or watersheds.

Socio-economic Vulnerability. To represent socio-econom-
ic vulnerability, we used the Center for Disease Control’s
Social Vulnerability Index (SVI), which ranks census tracts in
each state and the District of Columbia according to 15
indicator variables expected to predict the ability of
communities to respond during a natural disaster and recover
after it has passed.77 These variables are derived from the 5-
year American Community Survey (ACS) data set, centered
on the year 2016, which supplements the decennial census to
provide detailed measurements for a subset of households
within each census tract. The normalized indicators fall into
four themes: (1) socioeconomic status, (2) household
composition and disability, (3) minority status and language,
and (4) housing and transportation. The overall SVI score is
computed by summing scores within each theme and then
summing the scores across all themes.

Ecological Vulnerability. To represent the ecological
vulnerability of freshwater systems, we used an existing
resilience assessment completed for ∼70% of the stream
miles in NC.78,79 The aim of this effort was to identify places
that “...will continue to sustain high levels of biodiversity and
ecosystem function” in the future, despite climate and species
composition changes.78 The assessment normalized 12 under-
lying indicators, including physical parameters (e.g., number of
temperature classes) and ecological condition metrics (e.g.,
proportion of development in the watershed), which were
summed to produce an overall resilience score. Low resilience
streams can conversely be viewed as vulnerable, and several of
the parameters have direct implications for flooding. For
consistency in the direction of our analysis of human and
ecological systems, we inverted overall freshwater resilience
and the underlying indicators to equate to vulnerability. We
then aggregated these data to the scale of HUC 12 watersheds
to consider how spatial patterns of flood hazard and detected
flooding affect the landscape that contributes to the flow and
water quality of the stream network. For each HUC 12
watershed we generated a weighted vulnerability score using
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the proportional length of all scored stream segments that the
watershed contained.
Assessing Potential Exposure of Key Assets and

Sources of Water Quality Contaminants. To assess how
flood hazard and exposure affected human and ecological
assets and potential sources of water quality contaminants, we
conducted an overlay analysis within flood hazard and flood
exposure zones. To account for uncertainty for sites with only
fixed-point locations (e.g., water supply wells, CAFOs), we
defined the level of hazard or flood exposure as the zone
comprising the majority of pixels within a 60-m radius around
each point.
We first examined how spatial patterns of flood hazard and

exposure affected human and natural community assets. To
evaluate effects on human communities, we examined
municipal boundaries and census tracts80,81 as well as affected
population based on decennial census records. To examine the
risks to drinking water, we assessed surface water intakes and
public groundwater supply wells.51 To evaluate effects on
natural communities, we examined the highest value fish
habitat mapped by the NC Natural Heritage Program.82 We
did not use records for individual aquatic species given known
limitations including numerous distinct observers, bias in
survey methods, and effort.83

We also considered how flood hazard and exposure affected
potential water quality contaminant sources, including hazard-
ous waste sites, industrial dischargers, WWTPs, municipal
stormwater infrastructure, and CAFOs. Although poultry
CAFO locations are not publicly available, their recent
dramatic expansion throughout NC prompted nonprofit
organizations to map these facilities using aerial imagery and
ground truthing.55 Before inclusion of CAFO data in this
study, we examined a 10% random sample of both swine and
poultry CAFOs to verify that animal barns were present within
1 km of the registered location using Google Earth imagery
from the past 5 years. While NC swine manure application
records are not publicly available, data from other regions
suggest that the majority of liquid manure is applied within ∼5
km from CAFO facilities within the same watershed, due to
high transportation costs.84 We therefore considered croplands
within 5 km of mapped swine CAFOs as a potential source of
nutrients from manure land applications.85

Identifying Opportunities for Watershed-Scale Buy-
outs and Nature-Based Solutions. To provide a portfolio
of interventions in the region, we identified land within flood
hazard and exposure areas where buyouts or NBS could be
implemented based on current land cover.85 We considered
existing urban areas as high priorities for buyouts, while forests
and wetlands lacking formal protection would represent
conservation opportunities. Other unprotected open space,
predominantly agricultural lands, could be sites for floodplain
forest and wetland restoration. Alternatively, easements or
incentive-based land management modifications could permit
continued agricultural production.

■ RESULTS AND DISCUSSION
Comparison of Flood Hazard Zones and Detected

Flood Exposure Areas. Final random forest models detected
hurricane flooding with >91% accuracy across the Piedmont
and Coastal Plain regions of NC (Table S3). Although a
substantial portion of the study area falls within state-mapped
flood hazard zones (Figure 2A), hurricane flooding was
detected beyond these boundaries (Figure 2B). Despite

distinct storm tracks and local rainfall intensities, >18 million
km2 was impacted by both Hurricanes Matthew and Florence
(84.40% of the 1% AEP zone). Flooding from Hurricane
Matthew was nearly equivalent to the extent of the 1% AEP
zone, while flooding from Hurricane Florence exceeded the 1%
AEP zone by 22.70% and the 0.02% AEP zone by 15.10%.
Florence caused more extensive flooding in southeastern NC,
particularly in the Cape Fear and Lumber basins.
Our models likely underestimated the true maximum flood

extent. Flooding detected from a given image is based on
conditions when the satellite overpass occurred. Therefore, our
flood extent maps may not capture storm surge on the coast or
peak flooding for all riversmost river gages registered crests
within 4 days of Hurricane Florence’s landfall, yet portions of
the Northeast Cape Fear River crested 9 days later. Differences
in flood extent patterns for the two hurricanes are attributable
to the geographic distribution of rainfall intensities and
durations, not to stochastic variability in flooding from a
given storm event. The storm tracks and landfall locations for
these two hurricanes were similar, but other areas of the state
have previously been affected by hurricanes. Our maps
measuring exposure from Hurricanes Matthew and Florence
are not intended to replace Federal Emergency Management

Figure 2. Flood hazard zones mapped by the state of North Carolina
(A) and remotely sensed flooding detected from Hurricane Matthew
in 2016 and Hurricane Florence in 2018 (B) across the study area.
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Agency (FEMA) hazard mapping, which considers a longer
time span of historical flood events.
Social Vulnerability Across Flood Hazard and

Exposure Areas. Quantile regression revealed that the overall
SVI within census tracts was not clearly associated with all
levels of state-mapped flood hazard and remotely sensed
exposure. For the highest quantile, the relationship was only
significant for the mapped floodway (R2 = 0.31) (Figure 3A,

Table S4). Stronger associations were identified for variables
underlying the SVI (Table S4). State-mapped flood hazard and
flood exposure were both positively associated with the
proportion of unemployment, disability, and mobile home
structuresyet the magnitude of the effect of remotely sensed
flood exposure was greater than for the mapped hazard zones.
Flood hazard and exposure were both negatively associated
with the proportion of limited English-speaking households,
the proportion of multiunit structures, and crowding. We also
identified some key differences across hazard and exposure
levels. While state-mapped flood hazard was strongly
associated with the proportion of young children at the census
tract level, remotely sensed flood exposure was associated with
the proportion of older adults. Flood hazard was strongly
associated with limited vehicle access, while no significant
relationship was identified for flood exposure. Only the state-

mapped floodway was significantly associated with poverty and
minority population within census tracts, and surprisingly, no
significant associations were identified for per-capita income or
education.
The lack of apparent relationship between flood hazard and

exposure and some socioeconomic vulnerability indicators may
be explained by several factors. Social and economic indicators
vary across the landscape; for example, inland counties in
eastern NC rely heavily on agriculture, while coastal
communities are often supported by additional fishing and
tourism industries and have higher per capita income.81 Some
flood-prone properties are more expensive because they offer
scenic views and access to water features or shorelines.86

Furthermore, SVI data does not measure social vulnerability
indicators with uniform precision. Although the five-year ACS
data used as the basis of the SVI is the most recent source of
the socioeconomic information needed for this study, data
collected for a subset of households may be subject to higher
margins of error for small sample sizes.81

Ecological Vulnerability Across Flood Hazard and
Exposure Areas. Flood hazard and remotely sensed flood
exposure at the scale of contributing watersheds were strongly
associated with vulnerability of stream and river networks. For
watersheds contributing to headwater streams, the relationship
between flood exposure and overall vulnerability was
significant for the floodway, the 1% AEP zone, both Hurricanes
Matthew and Florence, and repeatedly flooded areas (Figure
3B, Table S5)the magnitude of the effect was stronger for
repeatedly flooded areas compared to the state-mapped 1%
AEP zone. Flood exposure and hazard had a strong positive
association with limited elevation range yet a strong negative
association with narrow range of temperature classes in
freshwater networks.
For watersheds contributing to larger streams and rivers, no

significant relationship was identified between state-mapped
AEP flood hazard and the highest quantile of overall freshwater
vulnerability (Table S6). Remotely sensed flood exposure was
significantly positively related to vulnerability for the lowest
quantile yet negatively associated with vulnerability for the
highest quantile, indicating that the effect diminished with
increasing vulnerability. Flood exposure had a greater
magnitude of effect than the 1% AEP zone for the elevation
range, while the 1% AEP had a greater magnitude of effect than
detected flooding for dam storage. For higher vulnerability
streams and rivers, negative associations between hazard and
exposure at the watershed scale were identified for most
variables underlying the overall freshwater vulnerability index.
The strong association between flooding and overall

freshwater vulnerability is unsurprising, given that many of
the underlying vulnerability indicators are geomorphic factors
that contribute to flooding. The weaker relationship for larger
streams and rivers also follows expectations. Headwaters are
more variable and more directly affected by smaller catch-
ments, while watersheds contributing to larger stream and river
networks are influenced by upstream reaches and the areas
they drain.

Affected Human and Natural Communities and
Contaminant Sources. Both human and natural assets in
NC were subject to substantial flood exposure from Hurricanes
Matthew and Florence (Table 1). Out of 433 municipalities in
the study area, some portion of 380 municipal boundaries
(>87%) experienced flooding in both Hurricanes Matthew and
Florence. Census tracts affected by both storms contain >7

Figure 3. Relationship between flooding and vulnerability assessed
with quantile regression: (A) flooding within census tracts and overall
social vulnerability and (B) flooding within HUC 12 watersheds
contributing to headwater streams and overall freshwater ecological
vulnerability. Relationships between indices of vulnerability and levels
of mapped flood hazard (top panels) and remotely sensed flood
exposure (bottom panels) are shown, with regression lines for the 0.1
and 0.9 quantiles of data, if significant (p < 0.05).
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million residents (∼70% of NC’s population). Nearly 80% of
state-designated important in-stream fish habitat was affected
by repeated flooding.
Our analysis provides the first assessment of the potential

implications of recent hurricanes for water quality across broad
areas of NC (Table 1). At least 118 municipal surface water
intakes and 206 public water supply wells (3.6% of the public

water well yield) are in repeatedly flooded areas. Additionally,
40 hazardous waste sites, 339 permitted industrial dischargers,
and 218 WWTPs (55% of the total treatment capacity) were
likely compromised. Most swine CAFOs are located outside of
the 1% AEP zone, as required by NC’s general permit.
However, within the repeatedly flooded area we identified 91
swine CAFOs with 125 waste lagoons, which produce ∼500

Table 1. Mapped Flood Hazard and Detected Flooding Affecting Key Socio-ecological Assets and Potential Sources of Water
Quality Contaminants in the Study Areaa

flood hazard zones detected flooding

total 0.2% AEP 1% AEP floodway
Hurricane
Matthew

Hurricane
Florence

repeat
flooding

watersheds 1,374 880 1,355 713 1,345 1,345 1,338
64.05% 98.62% 51.89% 97.89% 97.89% 97.38%

watershed area (km2) 113,698 72,331 112,112 58,665 111,201 111,201 110,472
63.62% 98.60% 51.60% 97.80% 97.80% 97.16%

census tracts 1,629 1,261 1,566 1,278 1,539 1,612 1,517
77.41% 96.13% 78.45% 94.48% 98.96% 93.12%

estimated population 7,565,948 5,992,791 7,353,120 6,208,932 7,239,924 7,491,073 7,171,901
79.21% 97.19% 82.06% 95.69% 99.01% 94.79%

municipalities 433 266 356 220 408 431 380
61.43% 82.22% 50.81% 94.23% 99.54% 87.76%

fish habitat (km2) 732,991 4,521 615,383 18,292 592,562 610,377 571,474
0.62% 83.96% 2.50% 80.84% 83.27% 77.96%

surface water intakesb 141 0 122 57 121 129 118
0.00% 86.52% 40.43% 85.82% 91.49% 83.69%

public water supply wellsb 5,622 115 427 55 266 370 206
2.05% 7.60% 0.98% 4.73% 6.58% 3.66%

well yieldb (gal/min) 743,718 27,306 73,995 6,630 41,402 60,805 28,636
3.67% 9.95% 0.89% 5.57% 8.18% 3.85%

hazardous sitesb 1,831 20 81 8 56 97 40
1.09% 4.42% 0.44% 3.06% 5.30% 2.18%

permitted industrial dischargersb 3,913 80 504 108 466 527 339
2.04% 12.88% 2.76% 11.91% 13.47% 8.66%

permitted wastewater treatment plantsb 733 10 310 96 239 299 218
1.36% 42.29% 13.10% 32.61% 40.79% 29.74%

wastewater treatment as built flowb

(gal/day)
1,345,994,400 5,290,000 803,531,800 525,608,000 763,012,800 856,808,800 733,421,800

0.39% 59.70% 39.05% 56.69% 63.66% 54.49%
Permitted urban stormwaterb 14,817 669 4,236 590 2,306 2,712 1,938

4.52% 28.59% 3.98% 15.56% 18.30% 13.08%
swine CAFOsb 2,022 9 52 4 199 190 91

0.45% 2.57% 0.20% 9.84% 9.40% 4.50%
swine lagoonsb 3,123 17 78 4 303 287 125

0.54% 2.50% 0.13% 9.70% 9.19% 4.00%
swine animalsb 9,223,385 25,076 214,742 12,320 1,059,766 835,899 412,056

0.27% 2.33% 0.13% 11.49% 9.06% 4.47%
swine manureb (gal/y) 8,988,086,427 26,532,528 183,782,696 11,420,640 1,193,613,546 920,014,434 496,466,620

0.30% 2.04% 0.13% 13.28% 10.24% 5.52%
agriculture 5 km from swine CAFOs
(km2)

224,884 1,192 5,594 237 26,171 16,813 6,676
0.53% 2.49% 0.11% 11.64% 7.48% 2.97%

poultry CAFOsb 3,543 19 35 2 113 112 36
0.54% 0.99% 0.06% 3.19% 3.16% 1.02%

poultry barnsb 13,102 105 142 11 497 441 146
0.80% 1.08% 0.08% 3.79% 3.37% 1.11%

poultry animalsb 190,592,530 1,509,067 2,291,989 195,684 6,405,818 7,422,510 2,172,184
0.79% 1.20% 0.10% 3.36% 3.89% 1.14%

poultry manure (tons/y) 1,890,074 16,660 22,824 1,477 75,290 68,545 23,181
0.88% 1.21% 0.08% 3.98% 3.63% 1.23%

aFixed point infrastructure was considered to be at-risk if the majority of a 60 m radius around a site’s geographic position fell into that zone or had
detected flooding. Units represent the number and percentage of locations in the study area for the target of interest, unless otherwise noted. bFixed
point locations.
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million gallons of liquid manure per year, as well as almost
6,700 km2 of agricultural land where manure is likely regularly
applied. We also identified 36 poultry CAFOs in repeatedly
flooded areas which produce >23,000 tons of dry litter per
year. Many contaminant sources are subject to setbacks from
streams or not permitted within the 1% AEP zone; however,
current siting restrictions may not go far enough.
To illustrate the potential for water contamination due to

flooding outside the 1% AEP zone, we use the example of
nutrient sources subject to distinct regulatory limitations,
including WWTPs (NPDES permitted point-source), swine
CAFOs (NPDES permitted point-source, or nonpoint source),
and poultry CAFOs (nonpoint source) (Figure 4). Outside the
1% AEP zone, potential loads from WWTP where hurricane
flooding was detected are of greater concern for Piedmont and
coastal watersheds, with lower potential loads in the mid-
Coastal Plain. Potential loads from swine CAFOs are greater
for the mid-Coastal Plain region, particularly for the Cape Fear
Basin, but also the Neuse, Lumber, and Chowan. Similarly,
potential loads from poultry CAFOs outside the 1% AEP zone
are a concern for the mid-Coastal Plain, particularly the Cape
Fear, Chowan, and Neuse Basins.
Although we rigorously identified potential exposure of

contaminant sources, we cannot definitively confirm that
releases occurred. Nor do our methods estimate the level of
damage that may have resulted, which depends on actual
pollutant concentrations. To conclusively demonstrate that
water quality impacts occurred due to the flooding we
detected, additional information would be required. Data
availability also limited our ability to quantify some potential
impacts. For example, ∼26% of NC’s population relies on
privately owned and maintained shallow groundwater wells as
their primary source of drinking water, yet reliable location
information for these wells was not available.87 Private wells
are more vulnerable to contamination than municipal wells,
which are subject to different construction standards, regular
maintenance, and testing.88

Opportunities for Watershed-Scale Buyouts and
Nature-Based Solutions. Within lands lacking formal
protection, we identified extensive regions where buyouts or
NBS could be implemented (Table 2). Working land
restoration, easements, or incentive-based management
changes represent the greatest extent of potential interventions,
followed by forest management and protection, wetland
conservation, and finally buyouts of existing development.
However, within repeatedly flooded areas, conservation of
wetlands that currently lack protection represents the largest
opportunity in terms of spatial arealosing the flood storage
and water purification services they provide could increase risk
for communities downstream under future storms.
While planning and land management have emphasized the

use of hardened infrastructure to protect against riverine
flooding, these defenses may increase vulnerability and
exposure.89 Although the costs of NBS have not been
thoroughly compared to hardened flood control structures,
economic optimization can substantially reduce the cost and
change the direction of a cost-benefit analysis for such
projects.48 Accounting for the value of water purification and
other services would increase the net benefit. Similarly,
buyouts or adaptation measures to increase the permeability
of existing development or reduce distribution of contaminants
during flood events could improve water quality, but further
study of these trade-offs is needed. Interventions that enhance

floodplain function can also be coupled with changes to
infrastructure siting, design, and operations.

Implications for Floodplain Planning and Manage-
ment in a Changing World. This study presents a timely
investigation into the impacts of hurricane-induced flooding
and opportunities to increase social and ecological resilience
across floodplains. Results suggest that state-mapped flood
hazard zones not only underpredict the extent of hurricane-
induced flood exposure but also systematically underpredict
burdens on vulnerable human populations and freshwater
ecosystems. In light of these findings, the use of the “100-year”
floodplain as a basis for insurance, siting restrictions, and
infrastructure design standards needs to be revisited.

Figure 4. Nutrient pollution sources beyond the 1% annual
exceedance probability flood hazard zone were affected by Hurricanes
Florence and Matthew, including (A) permitted wastewater treatment
plants, (B) permitted swine CAFOs, and (C) poultry CAFOs not
regulated by NPDES. Manure volume was estimated from the number
of animals and standard production rates.
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The flood extent mapping methods we developed provide a
vital tool for future disaster planning, response, and recovery
efforts. This approach could be integrated by FEMA, state, and
local emergency managers to update hazard projections.
Following future storms, as soon as radar imagery and high
water marks are available, our calibrated model can be
leveraged for rapid mapping of inland flooding to help direct
resources where they are most needed. Ongoing mapping of
storm-induced flooding can help to refine understanding of
how hazards are changing and how impacts affect sensitive
communities over time.17 The knowledge generated can
inform better disaster preparedness and formulation of new
standards and policies to protect people and ecosystems.
Appropriate solutions must be tailored to the needs and

constraints of a given locale; rebuilding NC after Hurricanes
Matthew and Florence presents a different case than efforts to
rebuild Manhattan after Hurricane Sandy. For small,
unincorporated communities that rely on agriculture as their
main economic driver, buyouts and NBS merit consideration
as potentially cost-effective options. Many rural communities
lack centralized planning and engineering, necessitating a
larger-scale cost-benefit analysis and coordination by state or
regional governments. The intervention opportunities we
identified at broad scales can be further evaluated in the
future; working with USGS, we will use a Soil and Water
Assessment Tool model to estimate water storage and nutrient
loads that would result from specific interventions, under
conditions ranging from droughts to floods.90 Because burdens
on vulnerable communities may not be detected using
measures of overall vulnerability, locally relevant social and
ecological indicators should be considered when allocating
disaster response resources and prioritizing where and how to
implement interventions.
Given societal and climatic changes, assessments such as

those we presented here will be crucial to meet these
challenges. Urbanization and industrialized agriculture are
expanding their footprint to meet the needs of a growing
population demanding a more protein-rich diet. This rapid
land use change is occurring within a regulatory system that
does not adequately offset impacts for flood risk and water
quality. More frequent hurricanes and increasing rain intensity
will likely magnify the co-occurrence of flooding and water
quality problems in more places in the future, necessitating
mitigation strategies. While this study focused on water quality,
the approach we demonstrated can be readily translated to

address other questions (e.g., transportation accessibility) and
support policies aimed at resilience in other flood prone
regions.
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1.77% 6.67% 0.54% 4.82% 7.85% 3.42%
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