

NC STATE UNIVERSITY

Department of Biological and Agricultural Engineering

Eden Area Watershed Study

Background

Piedmont Triad Regional Council Eden Area Watershed Assessment

- Detailed data on watershed background, potential water quality issues, data, policy, and anything else you can think of!
- Key Findings:
 - Pollutants of highest concern: Sediment and Bacteria (fecal coliform)
 - Unique landscape setting, geology and soils.
 - No "smoking gun" for water quality issues
 - Distributed issues likely linked to land stewardship, education, limited resources, and enforcement.
 - Watershed policy is progressive and developing!
 - Lots and lots of opportunities out there!

NCSU/Water Quality Group

Eden Area Watershed Modeling

- Size of this watershed and distributed nature of issues makes prioritizing projects/opportunities a daunting task!
- Modeling:
 - Provides a thorough (mathematical) way of identifying potential water quality problems and sources.
 - Puts numbers on the spatial contribution of various sources towards flow and water quality loadings.
 - Combines an enormous array of factors that we cannot keep up with any other way!
 - Allows us to examine the potential effects of BMP implementations and to target practices for maximum value.

Mapshed – GWLF - Predict

Penn State

- Generalized Watershed Loading Function
- Land Use
- Elevation
- Soils
- Subwatersheds
- Stream network
- Weather (22 yrs)
- Daily water balance
- Monthly loadings
- Sediment, Nutrients, and Bacteria
- Predict
 - Analyzing effect of potential BMPs
 - Initial cost estimates

All Forest Simulation

- This watershed is an evolving landscape!
- Terrain, soils, and geology lead to conditions that generate sediment load from the land and the streams...

Existing Conditions Simulation Watershed Land Uses

Existing Conditions Simulation

- Yes, there is a lot more sediment now....
- But the results are much more complex than this.
- (A Virginia study showed impaired watershed >10X

increases)

Sediment Sources

- > double the load of sediment
- Erosion rate increase > streambank loss increase
- Low % of development indicates sensitivity...

Erosion Sources - Primary contributors

Hay/Past

Cropland

Forest

Shrub/Scrub Regen

Land Use	Sed (tons/acre)			
Forest	0.09			
Hay/Past	0.51			
Shrub/Scrub Regen	1.11			
Cropland	2.78			
Overall	0.40			

- Overall load is not super high
- Logging: 10% land 40% erosion.
- Streambanks volume and land use.

Nutrient Sources

- Nutrient loads are 1.7-2.5x as high as all forest
- Pastures, animals, and logging sites.

Bacteria

- Bacteria predictions are very high.
- Predictions of bacteria loading are challenging, but results are in the range of monitoring data.
- > 90% of predicted bacteria loads are generated by farm animals.
- In this case, almost entirely grazing cattle on relatively unmanaged pastures.
- Rest is generated by wildlife and pet waste/urban areas.
- No septic or wastewater was included in the analysis...

What does this all mean?

Simple take aways

- This watershed is still largely undeveloped.
- The terrain, soils, and underlying geology make this watershed very sensitive to changes in land use.

The Bad News

- 1. There are serious increases and problems with sediment and bacteria in this watershed.
- 2. The most sensitive things going on are logging and animal operations.

The Good News

- 1. These things are not yet at levels that cannot be improved.
- 2. There are a lot of opportunities out there to make improvements!

Where do we start?

Sediment targeting

- 1. By far #1 is logging sites (and management afterwards)
- 2. Pastures (particularly combined with animal operations)
- 3. Streambank stabilization

Bacteria

1. Animal operations (grazing cattle)

Urban

- 1. Urban areas are not even on the radar at a watershed scale.
- 2. Most drains to Smith or Dan.
- 3. A small area in the headwaters of Dry Creek may be worth targeting.
- Which watershed have the greatest exposure to these sources?
- What projects have the most potential in these areas?

Top Sediment Watersheds

Target these watersheds for BMPs that reduce erosion!

Top Streambank Contributors

Target these watersheds for streambank stabilization!

• &c

Top Bacteria Contributors

Target these watersheds for Animal Operation BMPs!

88c

NC Priority Watersheds

Identifying BMPs

- Focus on BMP types that can be identified using remote sensing.
 GIS
- Focus on BMPs that target sediment and/or bacteria
 - Logging sites
 - Cattle exclusion/fencing
 - Riparian buffers
 - Stream restoration
 - Wetland restoration
 - Stormwater BMPs
 - Pond protection sites
- Develop GIS procedure for identifying sites.
- Check results, calibrate procedures in small areas.
- Apply broadly at watershed scale.

BMP Results

Practice	# sites found	Area/Length
Logging management practices	20-30	>10 acres each
Cattle exclusion/fencing	> 300	30 miles
Stream restoration or buffers	> 300	30+ miles
Wetland restoration	74	2,000 acres
Farm ponds	186 (>.75 ac) total > 400	~300 acres
Stormwater BMPs	100	Varies

Field level analysis generated over 1,000 sites on 35%....
...Size thresholds...

Modeling Potential Benefits

- PRedICT
- Is a tool built into Mapshed and GWLF
- Predicts the load reductions associated with watershed scale BMPs.
- Provides initial cost estimates.
- Apply to targeted priority subwatersheds
- Implement range of BMPs to examine potential benefits and costs.

Matrimony Creek

- Kitchen Sink
 - Implement every BMP in every place that we can find.
 - Cost: \$2.5-3M
 - Benefit: 8-10% reduction in sediment and nutrient loads
 - This is a lot of reduction! But probably not enough to get where you want to go.
- Take Home:
- BMPS are not gonna do it.
- We have to change the standard of practice and the culture of land management in this area.

More Benefits Modeling

- Bacteria Reductions
 - Fencing and buffers is highly effective
 - Relatively low cost compared to other BMP types.
- > 50% reduction achieved with full implementation of fencing and buffers.
- (w/alternative water supplies)
- Improved management for added value...

	Sediment reduction		Bacteria reduction	Estimated Cost
Matrimony Creek	8%	\$2.75M	> 50%	\$270,000
Town Creek	10%	\$2M	> 50%	\$61,000
Dry Creek	12%	\$1.7M	> 50%	\$125,000

Recommendations!

- 1. Management Actions
 - 1. Focus Areas
 - 2. Policy directives
 - 3. Planning improvements
- 2. Implementation Priorities
 - 1. Target Watersheds
 - 2. Priority Practices
- 3. Other Ideas
 - 1. Organizational ideas
 - 2. Strategies

Management Actions

General

- Continue developing policy and strategies for watershed protection.
- A lot of the rules and planning currently in place are not as effective as they could be (ie: erosion control, animal operations).
- Develop/plan sources of funding for enforcement and inspectors!
 - Pittsboro...

Discussion/Ideas

- This watershed is very sensitive to development pressures.
- Use the PTRC to help!
- and other watersheds as examples!

Management Actions

Forestry Operations

- Improve the standard of practice for forestry operations.
- Existing rules and expectations for sustainable practices.
- Education on sensitivity of watershed to logging.
- Enforcement!

Discussion/Ideas

- Increased emphasis on sustainable forestry.
- County Extension, Soil and Water, DFR.
- Notification/permitting process.
- Incentivize protection/preservation.
- Empowered Inspector!

Logging/clearing estimates 1992-2012

Management Actions

Animal Operations

- Improve the standard of practice for animal operations.
- Almost every site is exempt from existing rules.
- Every program we have is voluntary/cost-share.
- Perennial buffers are ineffective when short circuits exist.
- Enforcement!

Ideas

- Increased emphasis on BMPs for feedlots and pastures.
- County Extension, Soil and Water, NRCS
- Fencing and buffers
- Local or County Inspector?

Virginia TMDLs (Banister, Sandy, Polecate Creek)

Table 3. TMDL lo	oad reductions	specified during	TMDL development.
------------------	----------------	------------------	-------------------

	Required Load Reductions (%)							
Impairment	Straight Pipes & Failed Septic Systems	Urban	١	Livestock Direct Deposit	Pasture	Cropland	Wildlife Direct Deposit	Forest
Banister River	100	92		100	92	92	35	0
Sandy Creek	100	85		100	85	85	40	0
Polecat Creek	100	74		100	74	74	40	0

64% forest (you have 66%)

28% hay/pasture... (10% more than you...)

Study indicates massive needs:

120 miles of fencing

50,000 acres of improved pasture management and BMPs \$10-20M over 10 yrs.

Not enough to meet reduction goals....

NC Priority Watersheds

BMP Implementation

Priority Practices for Matrimony Creek

- Cattle Exclusion/Fencing.
- Combine with buffer establishment.
- Combined with improved pasture management.
 - Alternative water systems
 - Winter feeding strategies
 - Rotational grazing
- Preservation Sites

BMP Implementation

Priority Practices for Town Creek Town Creek

- Cattle exclusion fencing
- Agricultural BMPs
- Combined with improved pasture management
- Preservation Sites

BMP Implementation

Priority Practices for Dry Creek

- Fencing and buffers.
- Stream Restoration
- Stormwater BMPs

*Field study in Dry Creek

NC Priority Watersheds

Pond Protection

BMP Implementation

Priority Practice: Preservation

- Watershed Scale
- Separate Analysis
- Ranked by their sensitivity to land use changes to sediment yield...
- Priority Watersheds include:
 - 1. Middle Smith Turkeycock Creek
 - 2. Town Creek
 - 3. West Branch Cascade
 - 4. Upper Smith Fall Creek
 - 5. Matrimony Creek

* Note: 4 out of 5 are top sediment contributors

Priority Preservation Watersheds

Bringing it all together...

- Compile feedback and additional ideas/needs.
- Final report and maps of priority areas...
- Final BMP map and database...
- Target efforts.
- Maximize usability.
- Provide ability to look more closely as needed.

BMP Database

Watershed Land Uses

Upper Neuse River

Figure 1. Location Map of Upper Neuse Watershed

770 sq mi

61% Forest16% Ag17% Developed12% Protected

Growth!
Construction
Development

Programmatic costs \$4M - yr 1 \$13M - yr 25

Eden vs Upper Neuse

770 sq mi
770 sq mi
66% Forest
61% Forest
12% Ag/Lumber → 16% Ag
17% Hay/Pasture → 17% Developed
??% Protected
12% Protected

- Promote sustainable forestry practices and enforcement.
- Participate in planning to keep forests!
- Develop policy and incentivize protected land however possible.
- Protect against impacts of future urban development.

Eden vs Banister vs Upper Neuse

225 sq mi 184 sq mi 770 sq mi

66% Forest 64% Forest 61% Forest
12% Ag/Lumber → 8% Urban/Ag
17% Hay/Pasture 28% Pasture 17% Developed
??% Protected ??% Protected 12% Protected

- Promote sustainable forestry practices and enforcement.
- Participate in planning to keep forests!
- Develop policy and incentivize protected land however possible.
- Protect against impacts of future urban development.

Closing Thoughts

- Take ownership of your watershed!
- Do not rely on the state or regional office for policy and enforcement.
- Pareto Principle
- 80/20 rule
- In this case, 30% of the land is attributed to 75% of sediment problems.
- 10-20% of the land is attributed to 90% + of bacteria.
- Start by revisiting policies
- Use your non-profits and government agencies.
- Incentivize BMPs and implement wherever possible!

Other Ideas/ Questions?

- kris_bass@ncsu.edu
- -919.515.8245

- What are we missing?
- How can we make this the most accessible and usable for the group?

